Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Weinheim Bergstr Ger ; 136(1): e202312104, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516647

RESUMO

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.

2.
Angew Chem Int Ed Engl ; 63(1): e202312104, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37955592

RESUMO

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.


Assuntos
Amidas , Metiltransferases , Metiltransferases/metabolismo , Metilação , Amidas/química , S-Adenosilmetionina/química , Ácidos Carboxílicos , Trifosfato de Adenosina/metabolismo , Biocatálise
3.
Medicina (Kaunas) ; 59(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37763727

RESUMO

Background: Revision hip arthroplasty presents a surgical challenge, necessitating meticulous preoperative planning to avert complications like periprosthetic fractures and aseptic loosening. Historically, assessment of the accuracy of three-dimensional (3D) versus two-dimensional (2D) templating has focused exclusively on primary hip arthroplasty. Materials and Methods: In this retrospective study, we examined the accuracy of 3D templating for acetabular revision cups in 30 patients who underwent revision hip arthroplasty. Utilizing computed tomography scans of the patients' pelvis and 3D templates of the implants (Aesculap Plasmafit, B. Braun; Aesculap Plasmafit Revision, B. Braun; Avantage Acetabular System, Zimmerbiomet, EcoFit 2M, Implantcast; Tritanium Revision, Stryker), we performed 3D templating and positioned the acetabular cup implants accordingly. To evaluate accuracy, we compared the planned sizes of the acetabular cups in 2D and 3D with the sizes implanted during surgery. Results: An analysis was performed to examine potential influences on templating accuracy, specifically considering factors such as gender and body mass index (BMI). Significant statistical differences (p < 0.001) in the accuracy of size prediction were observed between 3D and 2D templating. Personalized 3D templating exhibited an accuracy rate of 66.7% for the correct prediction of the size of the acetabular cup, while 2D templating achieved an exact size prediction in only 26.7% of cases. There were no statistically significant differences between the 2D and 3D templating methods regarding gender or BMI. Conclusion: This study demonstrates that 3D templating improves the accuracy of predicting acetabular cup sizes in revision arthroplasty when compared to 2D templating. However, it should be noted that the predicted implant size generated through 3D templating tended to overestimate the implanted implant size by an average of 1.3 sizes.


Assuntos
Artroplastia de Quadril , Humanos , Estudos Retrospectivos , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Índice de Massa Corporal , Pelve
4.
Med Educ ; 57(11): 1156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712554
5.
Angew Chem Int Ed Engl ; 62(36): e202305326, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37218617

RESUMO

We report the first NMR and X-ray diffraction (XRD) structures of an unusual 13/11-helix (alternating i, i+1 {NH-O=C} and i, i+3 {C=O-H-N} H-bonds) formed by a heteromeric 1 : 1 sequence of α- and δ-amino acids, and demonstrate the application of this framework towards catalysis. Whilst intramolecular hydrogen bonds (IMHBs) are the clear driver of helix formation in this system, we also observe an apolar interaction between the ethyl residue of one δ-amino acid and the cyclohexyl group of the next δ-residue in the sequence that seems to stabilize one type of helix over another. To the best of our knowledge this type of additional stabilization leading to a specific helical preference has not been observed before. Critically, the helix type realized places the α-residue functionalities in positions proximal enough to engage in bifunctional catalysis as demonstrated in the application of our system as a minimalist aldolase mimic.


Assuntos
Frutose-Bifosfato Aldolase , Peptídeos , Modelos Moleculares , Peptídeos/química , Aminoácidos/química , Aldeído Liases , Ligação de Hidrogênio
6.
Chem Sci ; 14(14): 3881-3892, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37035694

RESUMO

Apoptin is a small viral protein capable of inducing cell death selectively in cancer cells. Despite its potential as an anticancer agent, relatively little is known about its mechanism of toxicity and cancer-selectivity. Previous experiments suggest that cancer-selective phosphorylation modulates apoptin toxicity, although a lack of chemical tools has hampered the dissection of underlying mechanisms. Here, we describe structure-function studies with site-specifically phosphorylated apoptin (apoptin-T108ph) in living cells which revealed that Thr108 phosphorylation is the selectivity switch for apoptin toxicity. Mechanistic investigations link T108ph to actin binding, cytoskeletal disruption and downstream inhibition of anoikis-resistance as well as cancer cell invasion. These results establish apoptin as a protein pro-drug, selectively activated in cancer cells by phosphorylation, which disrupts the cytoskeleton and promotes cell death. We anticipate that this mechanism provides a framework for the design of next generation anticancer proteins with enhanced selectivity and potency.

7.
J Rehabil Assist Technol Eng ; 10: 20556683231155198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777716

RESUMO

Introduction: Force measurement wheels are essential instruments for analysing manual wheelchair propulsion. Existing solutions are heavy and bulky, influence propulsion biomechanics, and are limited to confined laboratory environments. In this paper, a novel design for a compact and lightweight measurement wheel is presented and statically validated. Methods: Four connectors between the push-rim and wheel-rim doubled as force sensors to allow the calculation of tangential and radial forces as well as the point of force application. For validation, increasing weights were hung on the push-rim at known positions. Resulting values were compared against pre-determined force components. Results: The implemented prototype weighed 2.1 kg and was able to transmit signals to a mobile recording device at 140 Hz. Errors in forces at locations of propulsive pushes were in the range up to ±3.1 N but higher at the frontal extreme. Tangential force components were most accurate. Conclusion: The principle of instrumenting the joints between push-rim and wheel-rim shows promise for assessing wheelchair propulsion in daily life.

8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768957

RESUMO

Celiac disease (CD) represents a frequent autoimmune disease triggered by the ingestion of gliadin in genetically predisposed individuals. The alteration of enterocytes and brush border membrane morphology have been repetitively demonstrated, but the underlying mechanisms remain unclear. Microtubules represent a major element of the cytoskeleton and exert multiple functions depending on their tyrosination status. The aim of our study was to investigate whether posttranslational modification of microtubules was altered in the context of CD and whether this mechanism contributed to morphological changes of CD enterocytes. We examined the expression of tubulin tyrosine ligase (TTL) and vasohibin-2 (VASH2) and the level of detyrosinated and acetylated tubulin in duodenal biopsies and Caco-2 cells by immunoblot and immunofluorescence microcopy. Electron microscopy was performed to investigate the subcellular distribution of detyrosinated tubulin and brush border membrane architecture in CD biopsies and Madin-Darby Canine Kidney type II (MDCK) cells lacking TTL. CD enterocytes and Caco-2 cells stimulated with digested gliadin or IFN-y displayed a flattened cell morphology. This disturbed cellular architecture was accompanied by an increased amount of detyrosinated and acetylated tubulin and corresponding high expression of VASH2 and low expression of TTL. The altered posttranslational modification of tubulin was reversible after the introduction of the gluten-free diet. CD enterocytes and MDCK cells deficient in TTL displayed a reduced cell height along with an increased cell width and a reduced number of apical microvilli. Our results provide a functional explanation for the observed morphological alterations of the enterocytes observed in CD and provide diagnostic potential of the tyrosination status of microtubules as an early marker of villous atrophy and CD inflammation.


Assuntos
Doença Celíaca , Tubulina (Proteína) , Humanos , Animais , Cães , Tubulina (Proteína)/metabolismo , Enterócitos/metabolismo , Células CACO-2 , Doença Celíaca/metabolismo , Gliadina/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Proteínas Angiogênicas/metabolismo
9.
Chemistry ; 29(16): e202202503, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36534955

RESUMO

The site-selective modification of peptides and proteins facilitates the preparation of targeted therapeutic agents and tools to interrogate biochemical pathways. Among the numerous bioconjugation techniques developed to install groups of interest, those that generate C(sp3 )-C(sp3 ) bonds are significantly underrepresented despite affording proteolytically stable, biogenic linkages. Herein, a visible-light-mediated reaction is described that enables the site-selective modification of peptides and proteins via desulfurative C(sp3 )-C(sp3 ) bond formation. The reaction is rapid and high yielding in peptide systems, with comparable translation to proteins. Using this chemistry, a range of moieties is installed into model systems and an effective PTM-mimic is successfully integrated into a recombinantly expressed histone.


Assuntos
Cisteína , Proteínas , Cisteína/química , Proteínas/química , Peptídeos/química
10.
Angew Chem Weinheim Bergstr Ger ; 135(36): e202305326, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516402

RESUMO

We report the first NMR and X-ray diffraction (XRD) structures of an unusual 13/11-helix (alternating i, i+1 {NH-O=C} and i, i+3 {C=O-H-N} H-bonds) formed by a heteromeric 1 : 1 sequence of α- and δ-amino acids, and demonstrate the application of this framework towards catalysis. Whilst intramolecular hydrogen bonds (IMHBs) are the clear driver of helix formation in this system, we also observe an apolar interaction between the ethyl residue of one δ-amino acid and the cyclohexyl group of the next δ-residue in the sequence that seems to stabilize one type of helix over another. To the best of our knowledge this type of additional stabilization leading to a specific helical preference has not been observed before. Critically, the helix type realized places the α-residue functionalities in positions proximal enough to engage in bifunctional catalysis as demonstrated in the application of our system as a minimalist aldolase mimic.

11.
Front Cell Dev Biol ; 10: 901999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903547

RESUMO

Conjunction of epithelial cells into monolayer sheets implies the ability to migrate and to undergo apicobasal polarization. Both processes comprise reorganization of cytoskeletal elements and rearrangements of structural protein interactions. We modulated expression of tubulin tyrosin ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, to study the role of tubulin detyrosination/-tyrosination in the orientation of cell motility and in epithelial morphogenesis. Oriented cell migration and the organization of focal adhesions significantly lose directionality with diminishing amounts of microtubules enriched in detyrosinated tubulin. On the other hand, increasing quantities of detyrosinated tubulin results in faster plus end elongation of microtubules in migrating and in polarized epithelial cells. These plus ends are decorated by the plus end binding protein 1 (EB1), which mediates interaction between microtubules enriched in detyrosinated tubulin and the integrin-ILK complex at focal adhesions. EB1 accumulates at the apical cell pole at the base of the primary cilium following apicobasal polarization. Polarized cells almost devoid of detyrosinated tubulin form stunted primary cilia and multiluminal cysts in 3D-matrices. We conclude that the balance between detyrosinated and tyrosinated tubulin alters microtubule dynamics, affects the orientation of focal adhesions and determines the organization of primary cilia on epithelial cells.

12.
Opt Express ; 30(6): 8537-8549, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299305

RESUMO

Aluminum nitride (AlN) is an emerging material for integrated quantum photonics due to its large χ(2) nonlinearity. Here we demonstrate the hybrid integration of AlN on silicon nitride (SiN) photonic chips. Composite microrings are fabricated by reactive DC sputtering of c-axis oriented AlN on top of pre-patterned SiN. This new approach does not require any patterning of AlN and depends only on reliable SiN nanofabrication. This simplifies the nanofabrication process drastically. Optical characteristics, such as the quality factor, propagation losses and group index, are obtained. Our hybrid resonators can have a one order of magnitude increase in quality factor after the AlN integration, with propagation losses down to 0.7 dB/cm. Using finite-element simulations, phase matching in these waveguides is explored.

13.
Chem Sci ; 12(24): 8563-8570, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34221338

RESUMO

The tumor suppressor protein p53 is a master regulator of cell fate. The activity of p53 is controlled by a plethora of posttranslational modifications (PTMs). However, despite extensive research, the mechanisms of this regulation are still poorly understood due to a paucity of biochemical studies with p53 carrying defined PTMs. Here, we report a protein semi-synthesis approach to access site-specifically modified p53. We synthesized a set of chemically homogeneous full-length p53 carrying one (Ser20ph and Ser15ph) or two (Ser15,20ph) naturally occurring, damage-associated phosphoryl marks. Refolding and biochemical characterization of semisynthetic p53 variants confirmed their structural and functional integrity. Furthermore, we show that phosphorylation within the N-terminal domain directly enhances p300-dependent acetylation approximately twofold, consistent with the role of these marks in p53 activation. Given that the p53 N-terminus is a hotspot for PTMs, we believe that our approach will contribute greatly to a mechanistic understanding of how p53 is controlled by PTMs.

14.
Front Cell Dev Biol ; 9: 635723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614664

RESUMO

Epithelial monolayer formation depends on the architecture and composition of the microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine the positioning of structural cellular proteins. We studied the role of tubulin tyrosination in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise high levels of detyrosinated tubulin, change their shape into an initial flat morphology and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced adhesion and accelerated migration patterns of TTL-knockout cells combined with reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal adhesion scaffold components coincides with increased quantities and persistence of focal adhesion plaques. Our results indicate that the equilibrium between microtubules enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation, cell morphology, and adhesion.

15.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937782

RESUMO

We present here a novel resist formulation with active thiol groups at the surface. The material is UV curable, and can be patterned at the micro- and nanoscale by UV nanoimprint lithography. The resist formulation development, its processing, patterning and surface characterization are presented here. In addition, a possible application, including its use to modify the electrical properties of graphene devices is shown. The cured material is highly transparent, intrinsically hydrophilic and can be made more hydrophilic following a UV-ozone or an O2 plasma activation. We evaluated the hydrophilicity of the polymer for different polymer formulations and curing conditions. In addition, a protocol for patterning of the polymer in the micro and nanoscale by nanoimprinting is given and preliminary etching rates together with the polymer selectivity are measured. The main characteristic and unique advantage of the polymer is that it has thiol functional groups at the surface and in the bulk after curing. These groups allow for direct surface modifications with thiol-based chemistry e.g., thiol-ene reactions. We prove the presence of the thiol groups by Raman spectroscopy and perform a thiol-ene reaction to show the potential of the easy "click chemistry". This opens the way for very straightforward surface chemistry on nanoimprinted polymer samples. Furthermore, we show how the polymer improves the electrical properties of a graphene field effect transistor, allowing for optimal performance at ambient conditions.

16.
Biochemistry ; 59(39): 3683-3695, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32930597

RESUMO

Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their ß-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered "molecular wear-and-tear", destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to "mature" via a spontaneous post-translational incorporation of a ß-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.


Assuntos
Alquil e Aril Transferases/química , Proteínas de Bactérias/química , Enterobacter cloacae/enzimologia , Ácido Isoaspártico/química , Enterobacter cloacae/química , Estabilidade Enzimática , Isomerismo , Modelos Moleculares , Agregados Proteicos , Conformação Proteica , Dobramento de Proteína
18.
Pediatr Crit Care Med ; 21(2): e114-e120, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834244

RESUMO

OBJECTIVES: Children with chronic critical illness are at higher risk for cardiopulmonary arrests. Before chronically ill children are discharged from hospital, family members receive training in basic life support at many institutions. We evaluated whether a multimodal training program is able to teach adherence to current resuscitation guidelines and whether laypersons can be trained to perform both bag-mask ventilation and mouth-to-mouth ventilation equally effective in infants. DESIGN: Prospective observational study. SETTING: Pediatric critical care unit of a tertiary referral center. SUBJECTS: Relatives of children with chronic illness prior to discharge from hospital. INTERVENTIONS: Multimodal emergency and cardiopulmonary resuscitation training program. MEASUREMENTS AND MAIN RESULTS: Following participation in our cardiopulmonary resuscitation training program 56 participants performed 112 simulated cardiopulmonary resuscitations (56 with mouth-to-mouth ventilation, 56 with bag-mask ventilation). Nearly all participants checked for consciousness and breathing. Shouting for help and activation of the emergency response system was only performed in half of the cases. There was almost full adherence to the resuscitation guidelines regarding number of chest compressions, chest compression rate, compression depth, full chest recoil, and duration of interruption of chest compression for rescue breaths. The comparison of mouth-to-mouth ventilation and bag-mask ventilation revealed no significant differences regarding the rate of successful ventilation (mouth-to-mouth ventilation: 77.1% ± 39.6%, bag-mask ventilation: 80.4% ± 38.0%; p = 0.39) and the cardiopulmonary resuscitation performance. CONCLUSIONS: A standardized multimodal cardiopulmonary resuscitation training program for family members of chronically ill children is effective to teach good cardiopulmonary resuscitation performance and adherence to resuscitation guidelines. Laypersons could be successfully trained to equally perform mouth-to-mouth and bag-mask ventilation technique.


Assuntos
Reanimação Cardiopulmonar/educação , Reanimação Cardiopulmonar/métodos , Cuidadores/educação , Doença Crônica/terapia , Parada Cardíaca/terapia , Reanimação Cardiopulmonar/instrumentação , Reanimação Cardiopulmonar/normas , Criança , Pré-Escolar , Estado Terminal , Família , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica , Máscaras , Boca , Guias de Prática Clínica como Assunto , Estudos Prospectivos , Respiração , Respiração Artificial/instrumentação , Respiração Artificial/métodos , Respiração Artificial/normas , Tórax
19.
Cancers (Basel) ; 11(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817939

RESUMO

Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.

20.
J Am Chem Soc ; 141(38): 15029-15039, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31479253

RESUMO

Polycomb Repressive Complex 2 (PRC2) catalyzes mono-, di-, and trimethylation of lysine 27 on histone H3 (H3K27me1-3) to control expression of genes important for differentiation and maintenance of cell identity. PRC2 activity is regulated by a number of different inputs, including allosteric activation by its product, H3K27me3. This positive feedback loop is thought to be important for the establishment of large domains of condensed heterochromatin. In addition to other chromatin modifications, ancillary subunits of PRC2, foremost JARID2, affect the rate of H3K27 methylation. Many gaps remain in our understanding of how PRC2 integrates these various signals to determine where and when to deposit H3K27 methyl marks. In this study, we utilize designer chromatin substrates to demonstrate that propagation of H3K27 methylation by the PRC2 core complex has geometrically defined preferences that are overridden by the presence of JARID2. Our studies also show that phosphorylation of JARID2 can partially regulate its ability to stimulate PRC2 activity. Collectively, these biochemical insights further our understanding of the mechanisms that govern PRC2 activity, and highlight a role for JARID2 in de novo deposition of H3K27me3-containing repressive domains.


Assuntos
Heterocromatina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Biocatálise , Heterocromatina/química , Humanos , Cinética , Complexo Repressor Polycomb 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...